Week 4: Working with network data (and an intro to Gephi)

Naomi Arnold https://narnolddd.github.io/

Morning all! We will start 9:05 as usual :-)

Tutorial aims

- Understand some of the research design decisions in constructing a network from data
- Understand the components of a meaningful network visualisation
- Lord of the Rings Gephi demo
- Coursework topic Q&A session

Studying systems as networks

System of interest

e.g. the Internet, the human brain, Twitter, real social networks

Take Measurements

Empirical data

e.g. traceroute data, fMRI scans, set of tweets, phone call logs

Make conclusions about

Make some decisions

Analyse the graph

Centralities, community detection, epidemic spreading

Do network analysis

Construct the graph

What are the nodes? What are the edges? Directed? Undirected? Weighted? Temporal? Multilayer?

Data Types: Edge List

- Usually a list with each row having 2 or more comma/tab separated values
- First two values are **source** and **destination** nodes of edge
- Any extra values are metadata
 e.g. timestamp, edge weight

```
14752 14736 1099526971
1531 1080 1099889279
1084 1083 1100319847
5 1 1100465622
1207 525 1100472216
533 509 1100532357
1207 524 1100534104
6027 527 1100557833
5626 4581 1100627183
```

e.g. Facebook wall post dataset has user ids of wall poster and postee resp., and UNIX timestamp of when post was created

[Bimal Viswanath et al On the evolution of user interaction in Facebook. In *Proc. Workshop on Online Social Networks*, pages 37--42, 2009.]

Data types: Databases

eventName	eventSec	id	matchld	matchPeriod	playerId	positions	subEventId	subEventName	tags
Pass	1.656214	258612104	2057954	1H	122671	[{'y': 50, 'x': 50}, {'y': 53, 'x': 35}]	85	Simple pass	[{'id': 1801}]
Pass	4.487814	258612106	2057954	1H	139393	[{'y': 53, 'x': 35}, {'y': 19, 'x': 75}]	83	High pass	[{'id': 1801}]
Duel	5.937411	258612077	2057954	1H	103668	[{'y': 81, 'x': 25}, {'y': 83, 'x': 37}]	10	Air duel	[{'id': 703}, {'id': 1801}]

More complicated example: FIFA dataset where edges could be passes, specific types of passes, tackles etc.

[Luca Pappalardo et al, A public data set of spatio-temporal match events in soccer competitions, 2018, Nature]

Data Types: Adjacency/Weight Matrix

Dest Node

Source Node

	1	2	3	
1	0	0.87	0.23	
2	0.87	0	0.65	
3	0.23	0.65	0	

Value at **row i** and **column j** is the weight between node i and j

Software/libraries for network visualisation

www.menti.com 40 86 42 7

Aaagh, my network is too big — thinning

- Windowing if the edges in your dataset have timestamps, look only at edges within a certain time window.
- Random edge sample (requires preprocessing in e.g. Python)
 - take a random sample of the edges in the dataset.
- Random node sample take the network you get from a random sample of the nodes
- **Degree filter** only include nodes of above a certain degree (e.g. get rid of nodes of degree 0,1)

Network visualisation ingredients

- Node positions where the nodes are placed in the space?
- Node features size/colour/shape?
- Edge features thickness, colour, shape?

Node Positions

- Want to minimise edge crossover
- Put nodes that are close to each other by hops close to each other in the space
- Layout algorithms help with this (but are not perfect)

Node Properties

Size (usually some centrality measure)

Shape (different type of nodes in the graph?)

Colour (usually community-related)

Here's one I made earlier

Takeaways

- Lots of decisions to make when constructing a network think and brainstorm before importing to Gephi
- Some preprocessing may be needed for visualisations to be meaningful
- Visualisation is an iterative process, lots of fun to be had with it
- Many tutorials available for Gephi and its different features to get started

Thanks for listening!

