DMSN Tutorial 2: Small Worlds and Weak Ties Naomi Arnold https://narnolddd.github.io/

- **Recap** on real networks vs random graphs
- Experiment with Watts-Strogatz model
- Understand the role that weak ties play in networks

In this tutorial:

Real vs Random Networks

Erdos-Renyi G(n,p) Model

1. Start with an empty graph of **n** nodes

2. "Coin" with head probability p

 For each pair of nodes, do a coin toss. If heads, draw an edge between them. If not, move on.

Increasing **p**

Random Graphs vs Real Networks

Zachary's Karate Club Graph

Apparent community structure

Some high degree 'hubs'

Random Graph

No community structure. "Blob"

Nodes of similar degree

Random Graphs vs Real Networks: Degree

Random: node degrees all clustered round the average value **Real:** "heavy tailed"

small number of high degree nodes, large number of low degree nodes

Random Graphs vs Real Networks: Clustering

Random: very low average clustering coefficent

Real: much higher average clustering coefficient, with some nodes having very high values

Why is the clustering so high? People you may know 21 mutual friends WeRateDogs™ = ⊘ @dog_rates Your Only Source For Professional Dog You liked 3 posts tagged #고 Ratings Instagram and Facebook 🕫 양이 this week. 1 w /eRateDogs partnerships@weratedogs.com...

In real life, we meet many friends through mutuals

Emergency Kittens @EmrgencyKittens

Critiquing the cutest cats online! SUBMIT YOUR PHOTOS/VIDEOS VIA

Online, this is "baked in" by friend/follow recommendation algorithms

Random Graphs vs Real Networks: Paths

Karate Club Random Graph

Fairly spot on with almost the same average path length for each!

Are short path lengths unusual?

- If everyone in the world had 100 friends:
- My number of friends would be 100
- ... friends of friends could be 100 x 100 = 10,000
- ... friends of friends of friends could be 100 x 100 x 100
 = 1,000,000
- With only 3 hops, already can reach 1 million people

Short path lengths can be a good thing

Quick, efficient distribution of content

Discovering/spreading Quick* travel across important information airport network

Short path lengths can be a bad thing

Epidemics can potentially spread very far very quickly

Fake news or misinformation can quickly be propagated

Other real-world networks

Network	Size	$\langle k \rangle$	l	l rand	С	Crand	Reference	Nr.
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52-4.11	3.7–3.76	6.36-6.18	0.18-0.3	0.001	Yook et al., 2001a, Pastor-Satorras et al., 2001	2
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	3
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	4
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	5
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	6
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	7
Math. co-authorship	70975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási <i>et al.</i> , 2001	8
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási <i>et al.</i> , 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	13
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	15
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17

Random: very good at path lengths

But bad at clustering!

Summary: Random Graphs vs Real Networks

	Real Social Networks	Random Graphs	?
Degree Distribution	Heavy Tailed (most nodes have low degree, few with high degree)	Light tailed (all nodes have close to the average degree)	?
Clustering Coefficient	High	Low	?
Path Lengths	Low	Low	?
Communities?	Yes	No	?

Questions so far?

Watts and Strogatz: "Can we keep the short path lengths but have higher clustering?"

Start with a ring graph where each node is connected to the k nodes closest to it. This has a **high** clustering coefficient.

For each node and attached edge, with probability **p**, reconnect it to a randomly chosen node, otherwise leave alone.

The model

When **p** is very high, this looks like a random graph again

Finding the happy medium

Zone where we have both high clustering and low average path length

Graph models so far

	Real Social Networks	Random Graphs	Watts-Strogatz
Degree Distribution	Heavy Tailed (most nodes have low degree, few with high degree)	Light tailed (all nodes have close to the average degree)	Light tailed (all nodes have close to the average degree)
Clustering Coefficient	High	Low	High
Path Lengths	Low	Low	Low
Communities?	Yes	No	No

Tie Strength and Weak Ties

Granovetter, 1973

Tie strength "combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and reciprocal services which characterize the tie"

Weak ties: Bridges

could be catastrophic

One example of a weak tie is a bridge. A bridge is an edge which, if removed, would **disconnect** the network.

Fairly rare in big networks, as

Weak ties: Local Bridge

An edge is a **local bridge** if removing it would make the distance between its endpoints **more than 2.**

Not a local bridge, as d(B,C) = 2 without.

C

D

A network measure of tie strength: Neighbourhood Overlap Given an Edge, the

overlap is:

 $|N(A) \cap N(B)|$

 $N(A) \cup N(B)$

Number of nodes who are neighbours of both A and B

Number of nodes who are neighbours of at least A or B

(If you enjoy set notation!)

Significance of weak ties Weak tie

May be the only (short) path between two communities

Important target for **epidemic** prevention

Strong ties redundant for information spread

Harder to **stop spread** of information/epidemic among densely connected graphs

Thanks for listening! What are your questions?

Recap: Node Clustering Coefficient

"Coom in" on A's neighbourhood and forget anything else.

2. Calculate the **bottom** of the fraction as $0.5^* k(A)^*(k(A) - 1)$

3. Count the pairs of neighbours of A that are connected

Pairs of connected neighbours: (B,E), (B,D)

Recap: Node Clustering Coefficient

- $N(B) = \{A, E, D, C\}$
- k(B) = 4
- $0.5^{k}(B)^{k}(B)^{-1} = 0.5^{4}3 = 6$
- Pairs of connected neighbours of B:
- (A,E), (A,D), (C,E)