DMSN Tutorial 1: Networks and
Random Graphs
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Session will start at 9:05,
see you soon! :-)
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Naomi Arnold

| am Naomi Arnold, a PhD student within the Networks group in the School of Electroni
Engineering and Computer Science at Queen Mary University of London. My supervisol
Richard Clegg and Raul Mondragon. My research interests are broadly in modelling dif
social and information systems as evolving graphs. Specific areas of interest to me are

* Network growth models: model selection and changepoint detection.

* Tools for temporal networks.

| maintain the FETA (Framework for Evolving Topology Analysis) codebase with Richar
which can be used for generating graphs from different growth models, and for model
(paper describing the background and process here).

| am also a contributor to the Raphtory software for the analysis of temporal graphs.
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Housekeeping

® Asking questions -- “raise hand” feature

® Chat channels -- bear in mind that moderators can see
these

®Session recordings -- each session will be recorded

® Tutorial materials -- will be uploaded after end of each
session



INn this tutorial:

® Recap ON concepts and metrics covered In the
lecture

® Get to grips with the Erdos-Renyi random graph model

® see SOMe of the key similarities and differences
between random graphs and real networks



A (very) brief history of network science
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Availability of rich datasets
+
Computing power

If you could draw one edge
per second and didn’t take

breaks, it would take 12,600
years to draw the Facebook
graph

facebook




Network Science is Interdisciplinary

® Social sciences: made first use of ‘sociograms’ as networks, and
drive a lot of the motivation for network science

® Mathematics/Physics: development of graph theory, models for
dynamics on/of networks (often using theory from particle physics!)

® Computer Science: developing and implementing algorithms for
networks, working with scalability challenges of big data

® Field specific applications: epidemiologists studying disease
prevention/vaccination, Internet network operators, social network



(Undirected) Graph

A graph is a tuple (V,E) of a set V
of vertices and E of edges

Vertex (node) set: {Laurissa, Teo,
Naomi, Mathieu}

Edge (link) set: { (Laurissa, Naomi),
(Laurissa, Mathieu),
(Naomi, Teo)}

Here, order doesn’t matter as
graph is undirected ;




Directed Graph

Vertex (node) set: {Laurissa, Teo,
Naomi, Mathieu}

{ (Laurissa, Naomi),
(Naomi, Laurissa)
(Mathieu, Laurissa),
(Naomi, Teo)}

Here, order does matter as
graph is directed

Edge (link) set:




How do we measure graphs?
How do we compare them?



Neighbournood and Degree

The neighbourhood N(v) of a
vertex v IS the set of vertices
adjacent to V

e.g. N(Naomi) = {Laurissa, Teo}

The degree k(v) of a vertex v is the
size of the neighbourhood: [N(v)|

e.g. k(Naomi) =2




Degree Sequence/Average Degree

The degree sequence of a graph
IS the list of the vertex degrees for
that graph

e.q.2,2,1, 1

The average degree of a graph <k>
IS the mean of the node degrees

egd.<k>=2+2+1+1)/4=1.5

(also equal to
2*|ledges|/|nodes|... why?)




Degree distribution

The degree distribution P(k) is the
proportion of nodes with degree
equal to k

P(k)
4

1/2




Degree distribution

... butit's common 1o look at the  $ZFW
proportion of nodes with degree [V, -
greater than or equal to k i .

13



CLUSTERING COEFFICIENT
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The clustering coefficient defines the proportion of A’s neighbours (N(A)) which are connected
by an edge (are friends).

The number of triangles 1n which A 1s involved wrt to the ones 1t could be involved 1n.

‘a,__é_s’ Queen Mary

Universitys_{ London




FORMALLY: CLUSTERING
COEFFICIENT

Local Clustering o2l Proportion of my friends who are also

Coetlicient e friends with my other friends...
Network Clustering | The average all all the node’s local
Coefficient e clustering coefficients

‘a,__é_s’ Queen Mary

University::gt London



FORMALLY: CLUSTERING
COEFFICIENT

| 2 eui |
Local Clustering C = v.v,€Nye ek
Coefficient k.(k —1)
]
Network Clustering CG=—) C,
Coefficient N7

el
Q) Queen Mary
Universitygt London



CLUSTERING COEFFICIENT: EXAMPLE
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CLUSTERING COEFFICIENT: EXAMPLE
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CLUSTERING COEFFICIENT: EXAMPLE
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Degree =4
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CLUSTERING COEFFICIENT: EXAMPLE

Degree =4

Links between
neighbours = 1
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CLUSTERING COEFFICIENT: EXAMPLE

Degree =4

Links between
neighbours = 1
AR
. k(k-1)

v.v, € N,e,, €L

‘*Qs’ Queen Mary
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1
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v.v, € N,e,, €L
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

@i—meﬂ{}‘ vV, € Nye, € E

ki(ki o 1)

G =2
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

2
@l— ) | v, v, € N,e,, €E
k(k—-1)
2 x 1

C,-:
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

2] et |
L l]kl) v, € Nye,, €L

2 x 1
4

C,-:
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

2|1e;) |
R AR
2 x 1

4 % 3

C,-:
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

21 {e.
@i — k‘(l{(eﬂci)‘ ViV, € Ni,e].,k c kE
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1
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CLUSTERING COEFFICIENT: EXAMPLE

Degree = 4 '

[L.inks between
neighbours = 1

2

@i ‘{ek}‘ vy, eNse, cE
k(k—l)

1

C = - Fraction of possible interconnections
| = .
6 between my neighbour!

‘*Qs’ Queen Mary
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Clustering Coefficient

Proportion of possible interconnections between neighbours

Node clustering coefficient Ci

o2l
ki(kz’_l)

V.V, ENye , €L

Opecial casel
If k(v) =1 or O,
C(v) =0




Clustering Coefficient

What is Laurissa’s clustering

coefficient?
Numerator: Only one pair of

Laurissa’s neighbours are
connected (Naomi, Teo), so 2*1

Denominator: Laurissa’s
degreeis 3,032 =06

So C(Laurissa) = 2/6 = 1/3
Average clustering C(G) = 7/12




Paths and Cycles

A path is a sequence of nodes where
each consecutive pair of nodes is
linked by an edge

Teo, Laurissa, Naomi

A cycle is a path where the start node
IS also the end node

Teo, Laurissa, Naomi, Teo



Paths and Cycles

The distance d(u,v) between two A
nodes Is the length of the shortest path i~ S
connecting them 7 .

d(Teo, Mathieu) = 2

The diameter of a graph is the largest
distance between a pair of nodes in the
graph
d(G) =2

Often more meaningful to look at average path length



Connected Graph

A graph is connected Iif there is a path between
every pair of vertices

v

o—©
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Connected Components

A connected component of a
graph G is a subgraph in which:
1. Any two vertices are

connected by paths
2. There are no edges to other
vertices in G.




Questions?



Erdos-Renyi Random Graph Model

® \\Vant to model real networks, have some baseline tO
compare

® “|s the value of this network metric unusual?”
VWant a null model

® \\Vhat Is the very simplest model formulation we can
look at?



Erdos-Renyi G(n,p) Model

<
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1. Start with an empty graph of n
nodes

2. Acquire a biased coin with head
probability p

3. For each pair of nodes,
do a coin toss. If heads,
draw an edge between

them. If not, move on.




Erdos-Renyi G(n,p) model

Increasing p



Average degree of ER networks

For each node, there are n-1 others In the
graph It could connect to.

Each of those connections can happen with
probability p

(If you were a fan of Probability and
Matrices, this is a binomial with n-1 trials
and success probability p)

So average degree is (n-1)p, or
approximately np




What do ER graphs look like?
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Very disconnected graph, A giant component Whole graph Is connected,
only tiny connected appears, no/very few some cycles present

components cycles



Frequency

Random Graphs vs Real Networks

B Karate Club
2 Random Graph

g

12

Random: node
degrees all clustered
round the average
value

Real: small number of
nigh degree noaes,
large number of low

degree nodes




Frequency

Random Graphs vs Real Networks

BN Karate Club
W Random Graph

04 0.6
Node Clustering Coefficient

Random: very low
average clustering
coefficent

Real: much higher
average clustering
coefficient, with some
nodes having very high

values
o 0

D
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Random Graphs vs Real Networks

25 3.0 35
Path Length

B Karate Club
@ Random Graph

Fairly spot on with
almost the same
average path length for
each!




Summary: Random Graphs vs Real Networks

Real Social Networks Random Graphs

Heavy Tailed (most nodes Light tailed (all nodes have

Degree Distribution have low degree, small few ?
L L close to the average degree)
with high degree)
Clustering Coefficient High Low ?
Path Lengths Low Low ?
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Thank you for
listening! What are
your questions?




