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Dynamics of network formation

Looking at how local processes

how individuals in a social network make new connections

how scientists choose papers to cite

influence the eventual global structure of a network

Figure: Saccharomyces cerevisiae
protein-protein interaction network

Figure: Visualisation of Facebook
graph

We use explanatory models to identify these mechanisms
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How should we validate explanatory models?

Traditionally, based on their ability to reproduce networks with similar
descriptive statistics on a to the network of interest such as: degree
distribution P(k), clustering coefficient, maximum degree.
Shortfalls of this approach:

What if two possible models each perform better on different
statistics?

Which statistics should carry more weight?

What if two different explanations give extremely similar end
statistics?

I present an example of this last bullet point and a method to distinguish
such models using temporal data.
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An evolving network model template

Start with small connected network of m0 nodes.

Label nodes 1, 2, . . . ,N(t) according to the order of their arrival.

At each iteration, add a node and connect to m existing nodes in the
network.

Nodes are chosen without replacement from a distribution

P(choose node i) = pi ,
N∑
i=1

pi = 1
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Two examples

The Barabási-Albert (BA) preferential attachment model sets pi ∝ ki , the
degree of node i .

Nodes of higher degree have greater chance of attracting new links

Dependent on network structure

Theoretical scale-free degree distribution P(k) ∼ k−3

The rank preference (RP) model sets pi ∝ i−α.

Longest established nodes have greater chance of attracting new links

Independent of network structure

Theoretical degree distribution P(k) ∼ k−γ with γ = 1 + 1/α

Henceforth let α = 1
2
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Degree distribution of realisation
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Figure: Degree distribution of realisation of BA (purple) and RP (green).
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Evolution of other statistics
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Degree distributions over time

Time-degree frequency plot of RP network
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Time-degree frequency plot of BA network
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Can we distinguish the two models?

Introduce the mixture model M(β), which gives probabilities of choosing a
node as:

P(choose node i) =

βpRP
i + (1− β)pBA

i

= β
i−α∑N
j=1 j

−α
+ (1− β)

ki∑N
j=1 kj

where β ∈ [0, 1], ie, a model that is part RP and part BA.
Given a synthetic network grown using model M(β), can we reliably
recover the parameter β?
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Method: Model likelihood

[R. Clegg, B. Parker, M. Rio Likelihood based assessment of network
models]

Definition

Let G = Gt be an evolving network and gt an observed snapshot, and let
M(θ) be a probabilistic model. Then the likelihood of model M(θ) given
the evolution sequence ~g = (g1, g2, . . . ) of G is

L (M(θ)|~g) = P(G = ~g |M(θ))

Assuming we can calculate this likelihood, can fit model parameters by
finding estimators which maximise the likelihood.
How do we calculate this?
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Calculation of likelihood

Conditional probability of single observation:

g1 g2

Example

Model adding node and one link at each timestep.

Theorem

Let ft(gt |M(θ)) = P(Gt = gt |gt−1, gt−2, . . . ,M(θ)). Then

L(M(θ)|~g) =
∏
t

ft(gt |M(θ))
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Experiment and Result

For β = 0, 0.2, . . . , 1 we
1 Grew artificial networks to 10,000 nodes, adding a node at each

timestep and connecting to m existing nodes with probabilities
defined by M(β).

2 Calculated maximum likelihood estimators β̂ for β.
3 Repeated 10 times and obtained mean/sd.
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Example: StackExchange MathOverflow Dataset

[A. Paranjape, A. R. Benson, and J. Leskovec: Motifs in temporal
networks]

Online mathematics based Q & A forum.
Nodes are users and an edge can represent any interaction between two
users:

Answering a user’s question

Commenting on a question or user’s answer to a question

We tested the model M(β) where node probabilities are given as

P(choose node i) = βpRP
i + (1− β)pBA

i

and found that β = 0.05 gives the maximum likelihood.
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Best mixture model compared to non-mixed models
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Conclusions & future directions

Temporal data allows deeper understanding of mechanisms governing
network evolution and opportunity to go beyond comparisons of
snapshots.

Micro-scale information about individual node and link arrivals can be
used to find model likelihoods and validate explanations.

We have a way of distinguishing very similar explanatory models when
temporal data is available.

Idea of model mixtures may be useful for modelling networks arising
from a mixture of mechanisms.
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Final

Thanks for listening!
Code available at https://github.com/narnolddd/FETA2
Dataset available at SNAP:
http://snap.stanford.edu/data/sx-mathoverflow.html

Questions?
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if(timeleft> ε): Degree Trichotomy vs TPA

The degree trichotomy model sets pi ∝ k̂i where k̂i =


L ki ≤ L

ki L < ki ≤ U

U ki > U
where L and U constants.
The temporal preferential attachment model batches nodes into time
intervals I1, I2, ... of equal size according to their arrival time. A new node
arriving in the most recent time period It will choose m nodes to connect
to by repeatedly:

1 picking a time period with P(choose IT ) = f (t − T ) where f is a
decaying function (preferring more recent time intervals)

2 picking a node within that time interval according to Barabási-Albert
preferential attachment.
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Result

Use a mixture model M(β) assigning node probabilities

pi = βpTPA
i + (1− β)pDT

i
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Appendix: Copying network transformations

To grow the networks in Stack Exchange figure, we extracted from the
edgelist the sequence of operations of the network’s evolution, e.g.:

Time Operation

1 New node added with 3 links
2 New link between existing nodes
3 New link between existing nodes
4 New node added with 5 links
...

...

and grew networks with the corresponding sequence, with node
probabilities provided by choice of model M
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