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Our hypothesis

The model best describing growth of a network 
comprises a mixture of mechanisms…

… and this mixture 
may change over time.
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Actual example: Enron email network

Corpus of emails between 
employees handed over for 

investigation

Sender Receiver
UNIX

Enron scandal: multiple 
well-documented events 

in company’s downfall

?
Were events in 

the scandal 
reflected in the 
evolution of the 
email network?
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How do we traditionally choose a model?

Network we 
want to model

Candidate 
models

Monte Carlo 
Simulations

Network snapshots with 
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Comparison of stats 
with original network
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Shortfalls with this approach
1. Networks can have same 

statistics (e.g. degree 
distribution) but dramatically 

different properties
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3. Doesn’t capture any time-
varying aspect of the 

network’s growth

2. Different models may perform 
better on different statistics

Hmm… What about with 
more information than just 

a snapshot?
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n=1 graph observations n=8 observations of 
graph growth

=> Can calculate precise likelihood of model, see R.Clegg et al: 
Likelihood based assessment of dynamic networks (2015)
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neighbour with probability:
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neighbour with probability:

pi = β1(t)p(1)
i + … + βl(t)p(l)

i

Sum is over probabilities 
according to different 

models, e.g. Preferential 
Attachment/Triangle 

Closure

Weights show 
importance of each 

model
This importance may 

change over time
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Artificial data example

pi(t) ∝ {
kα

i t ≤ T

kβ
i t > T

Preferential attachment 
with a strength 

(exponent) that abruptly 
changes at time T
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Artificial data example

pi(t) ∝ {
kα

i t ≤ T

kβ
i t > T

Preferential attachment 
with a strength 

(exponent) that abruptly 
changes at time T

Given we know         and          , can we infer T?α β
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Connectivity of Growing Random Networks (2000)
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1,000 node network

Close to dotted 
line = good

10,000 node network

Even better in 
larger network
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Enron Revisited

Barabasi-Albert

Random

Triangle Closure

1
1 Dec 2, 2001: Enron 

goes bankrupt, 
thousands of workers 

laid off

2

2
April 9, 2001: Top 

Enron auditor pleads 
guilty to obstruction 
for ordering staff to 
destroy documents
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Takeaways

• Often a mixture of mechanisms better describes a 
network’s growth rather than a single one.

• This mixture may change over time, which may tell us 
about a network’s response to events as well as longer 
term trends.

• Framework for combining these mechanisms gives us a 
new way of analysing growing networks
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Thanks for listening! 
Questions?
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n.a.arnold@qmul.ac.ukgithub.com/narnolddd @narnolddd

https://github.com/narnolddd/FETA3
Framework for Evolving Topology Analysis

mailto:n.a.arnold@qmul.ac.uk
https://github.com/narnolddd
https://github.com/narnolddd/FETA3

