Uncovering network evolution mechanisms using temporal data

Naomi Arnold, Raul Mondragon, Richard Clegg

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Static Models

Forks in the blockchain resulting in splitting of transaction network

Forks in the blockchain resulting in splitting of transaction network

Emergence of IXPs changing peering behaviour

Forks in the blockchain resulting in splitting of transaction network

Emergence of IXPs changing peering behaviour

New features which change way in which users connect and interact with each other

Time

Time

Time

In1

Problems:

Problems:

Many statistics you can use, how do you decide which are the important ones?

Problems:

Many statistics you can use, how do you decide which are the important ones?

Certain statistics highly variable from one realisation to another e.g. maximum degree

Problems:

Many statistics you can use, how do you decide which are the important ones?

Certain statistics highly variable from one realisation to another e.g. maximum degree

Generating networks takes time, especially when trying different parameters

Problems:

Many statistics you can use, how do you decide which are the important ones?

Certain statistics highly variable from one realisation to another e.g. maximum degree Generating networks takes time, especially when trying different parameters

Degree distribution of generated networks

Maximum Degree

Global Clustering Coefficient

Mean Squared Degree $\langle k^2 \rangle$

[R. G. Clegg, B. Parker, M. Rio Likelihood based assessment of dynamic networks (2016)]

Evolving network G(t)

Candidate $M(\theta)$ probabilistic model

[R. G. Clegg, B. Parker, M. Rio Likelihood based assessment of dynamic networks (2016)]

Evolving network G(t)

Candidate $M(\theta)$ probabilistic model

Likelihood of model: Probability of generating entire evolution of G from model $M(\theta)$

[R. G. Clegg, B. Parker, M. Rio Likelihood based assessment of dynamic networks (2016)]

Many statistics you can use, how do you decide which are the important ones?

Certain statistics highly variable from one realisation to another e.g. maximum degree

Generating networks takes time, especially when trying different parameters

Many statistics you can use, how do you decide which are the

Not relying on single statistics but instead a network-wide measure

variable from one realisation to another e.g. maximum degree

Generating networks takes time, especially when trying different parameters

Many statistics you can use, how do you decide which are the

Not relying on single statistics but instead a network-wide measure

variable from one realisation to another e.g. maximum degree

Generating networks takes

Calculating likelihood is much quicker than generating networks and taking measurements

Many statistics you can use, how do you decide which are the

Not relying on single statistics but instead a network-wide measure

variable from one realisation to another e.g. maximum degree

Generating networks takes

Calculating likelihood is much quicker than generating networks and taking measurements

Actually, we can distinguish these using likelihood where single statistics might fail!

Distinguishing networks generated by BA vs RP 0

Barabasi-Albert

Rank-**Preference**

Albert

Distinguishing networks generated by BA vs RP

Distinguishing networks generated by BA vs RP

0

Barabasi-Albert

Preference

Distinguishing networks generated by BA vs RP 0 Rank-**Barabasi-**

Albert

Distinguishing networks generated by BA vs RP

So, we can distinguish between even very similar models

Barabasi-Albert

Example: Modeling the AS topology

University of Oregon Routeviews dataset

Candidate models to mix:

0

Positive-Feedback-Preference (PFP)

Nodes chosen uniformly at random

Example: Modeling the AS topology

University of Oregon Routeviews dataset

Candidate models to mix:

0

Positive-Feedback-Preference (PFP)

1

Nodes chosen uniformly at random

Takeaways Degree Assortativity

Takeaways

Global Clustering Coefficient

Model likelihood as a tool for identifying the contribution of different network growth mechanisms - even similar-looking ones

16

Model likelihood as a tool for identifying the contribution of different network growth mechanisms - even similar-looking ones Can be used to find the best fit of a mixture of models to real data that takes into account the whole network's evolution

Model likelihood as a tool for identifying the contribution of different network growth mechanisms - even similar-looking ones

Use of model likelihood to detect changepoints: drop in likelihood indicating network change. Can be used to find the best fit of a mixture of models to real data that takes into account the whole network's evolution

Model likelihood as a tool for identifying the contribution of different network growth mechanisms - even similar-looking ones

Use of model likelihood to detect changepoints: drop in likelihood indicating network change. Can be used to find the best fit of a mixture of models to real data that takes into account the whole network's evolution

Thanks for listening!

n.a.arnold@qmul.ac.uk

