Distinguishing scale-free topology

generators using temporal data
Naomi Arnold, Raul Mondragon, Richard Clegg

25 September 2018

‘a,,_él_s’ Queen Mary

Tccs2 1 8 University of London

SSSSSSSSSSSS
EEEEEE



* The structure of many networks of
interest is often dynamic in nature

* Rich temporal data for network
topologies is becoming more
prevalent

* This allows us to better investigate
models for network growth over time
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Attachment probabilities

p; x 1 p; « f(k;) p; < f(1,)

Random/neutral Function of node Function of some
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How do we quantify how good a fit
a model is to real data?

* Traditional approach: generate a network from model
of the same size as target network, and compare on
different statistics

* Problem: generating large networks is time
consuming

* Problem: two networks having similar properties

doesn’'t necessarily mean their evolution was governed
in the same way  Why?
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Two different models for
scale-free networks

Barabasi Albert model Rank-preference model
r—
p; x Kk p; X I
Higher degree nodes likelier Older nodes likelier to
to attract new links attract new links
Mean field prediction: Mean field predlctl o] s HINEN
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Different approach: Model
likelihood

Likelihood of model given observation = probability of seeing
observation given model

Likelihood of random/uniform model

given by:
1
| mnd(ChOOSe hode 2) — E
Likelihood of BA preferential attachment
model given by:
Ps4(Choose node 2) = 2 _1
BA =573

[R. Clegg, B. Parker, M. Rio 20:516: Likelihood-based assessment of dynamic network models]
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Likelihood: Remarks

e Quickly calculated, compared to generating networks

e Given a number of models, can define the ‘best’ as that
which has the highest likelihood

 For models with parameters, can find maximum likelihood
estimators for params
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Model Mixtures

Hypothesis: network growth likely to be governed by
a mixture of mechanisms, not just one
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Model Mixtures

Hypothesis: network growth likely to be governed by
a mixture of mechanisms, not just one

Example: Mixture of BA and rank preference model

p; = (1 = ppPt + pp*
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Distinguishing using maximum
likelihood estimation

Having generated
artificial networks using:

p; = pp’f + (1 = pp4

We can accurately recover
the proportion ﬁ as an
MLE!
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Distinguishing using maximum
likelihood estimation
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Real data example: Math
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Real data example: Math
Overflow Social Network

e Q&A site for mathematical problems

e Nodes are users

* An undirected edge between node A and B if A answers
a question by B, A comments on B’s answer or question

 Multiple edges collapsed

* Models components tested: BA, static rank preference
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Real data example: Math
Overflow Social Network
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Real data example: Math
Overflow Social Network
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Real data example: Routeviews
AS topology dataset

m e [imestamped dataset: nodes autonomous systems and
links represent peering relationship

e Model components tested: random/uniform model,
positive-feedback preference model

Note - positive-feedback
preference model gives: p l
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Real data example: Routeviews
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Real data example: Routeviews
AS topology dataset
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Remarks

« Often (not always) the highest likelihood mixture of model components

may generate networks with better matching statistics than any single
component alone

e But this highest likelihood mix is not guaranteed to be a good model - still
need to look at network statistics

* Finding maximum likelihood mix of more than two model components
may become expensive - candidate for ML techniques
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Conclusions and future
directions

Temporal data allows calculation of likelihoods of dynamic models given
observed network evolution

With this measure we can distinguish models which generate networks that are
similar in structure

Fitting mixed models helps uncover the roles of different processes governing
network growth

Work In progress: using likelihood measure to analyse how such processes may
change over time
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Thank you for listening!
What are your questions?
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github.com/narnolddd n.a.arnold@qgmul.ac.uk @narnolddd
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