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Motivation

• The structure of many networks of 
interest is often dynamic in nature


• Rich temporal data for network 
topologies is becoming more 
prevalent


• This allows us to better investigate 
models for network growth over time
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Attachment probabilities
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pi ∝ f(ki)
Function of node 
i’s degree, e.g. BA 

model

pi ∝ 1
Random/neutral 
model. All nodes 

equally likely

pi ∝ f(ηi)
Function of some 

other intrinsic 
node property
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How do we quantify how good a fit 
a model is to real data?
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How do we quantify how good a fit 
a model is to real data?

• Traditional approach: generate a network from model 
of the same size as target network, and compare on 
different statistics

• Problem: generating large networks is time 
consuming

• Problem: two networks having similar properties 
doesn’t necessarily mean their evolution was governed 
in the same way Why?
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scale-free networks
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scaling in random networks]

[S. Fortunato, A. Flammini, F. Menczer 2006: 
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Degree distribution
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Different approach: Model 
likelihood

Likelihood of model given observation = probability of seeing 
observation given model

42

31

Likelihood of random/uniform model 
given by:

ℙrand(Choose node 2) =
1
3

Likelihood of BA preferential attachment 
model given by:

ℙBA(Choose node 2) =
2

1 + 2 + 1
=

1
2

[R. Clegg, B. Parker, M. Rio 2016: Likelihood-based assessment of dynamic network models]!9
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Likelihood: Remarks

• Quickly calculated, compared to generating networks

• Given a number of models, can define the ‘best’ as that 
which has the highest likelihood

• For models with parameters, can find maximum likelihood 
estimators for params
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Model Mixtures
Hypothesis: network growth likely to be governed by 

a mixture of mechanisms, not just one

Example: Mixture of BA and rank preference model

pi = (1 − β)pBA
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Real data example: Math 
Overflow Social Network

• Q&A site for mathematical problems


• Nodes are users


• An undirected edge between node A and B if A answers 
a question by B, A comments on B’s answer or question


• Multiple edges collapsed


• Models components tested: BA, static rank preference

Dataset from [A. Paranjape, A. Benson, J. Leskovec 2017: Motifs in temporal networks]!13
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Real data example: Routeviews 
AS topology dataset

• Timestamped dataset: nodes autonomous systems and 
links represent peering relationship


• Model components tested: random/uniform model, 
positive-feedback preference model

Note - positive-feedback 
preference model gives: pi ∝ k1+δ log10 ki

i

PFP model: [S. Zhou, R. Mondragón 2004: Accurately modelling the Internet Topology]!16



Real data example: Routeviews 
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Remarks

• Often (not always) the highest likelihood mixture of model components 
may generate networks with better matching statistics than any single 
component alone


• But this highest likelihood mix is not guaranteed to be a good model - still 
need to look at network statistics


• Finding maximum likelihood mix of more than two model components 
may become expensive - candidate for ML techniques
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Conclusions and future 
directions

• Temporal data allows calculation of likelihoods of dynamic models given 
observed network evolution


• With this measure we can distinguish models which generate networks that are 
similar in structure


• Fitting mixed models helps uncover the roles of different processes governing 
network growth


• Work in progress: using likelihood measure to analyse how such processes may 
change over time

!20



Thank you for listening! 
What are your questions?

n.a.arnold@qmul.ac.ukgithub.com/narnolddd @narnolddd
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